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The present study is motivated by the conjecture of Chvátal [6] suggesting that
there is a constant t such that every t-tough graph (on at least 3 vertices) is
Hamiltonian. For an introduction to the topic, we refer the reader to [2, 3, 12].
We say that a graph is t-tough if for every integer c greater than 1, it cannot
be disconnected into at least c components by removing less than ⌈ct⌉ vertices.
Given a graph G, we say that a graph S is its underlying graph if there is a
family of connected subgraphs of S such that G is isomorphic to the intersection
graph of the family. We recall that the conjecture was shown to be true when
restricted, for instance, to interval graphs [4, 10], circular arc graphs [13], split
graphs [11], spider graphs [9] or chordal graphs [5, 8]; and all these classes admit
a natural definition in terms of underlying graphs. We show that for every k there
is t such that being t-tough implies Hamiltonicity for every graph (on at least
3 vertices) whose some underlying graph has at most k cycles. The idea of the
proof is to balance between two approaches: a direct use of the classical theorem
of Chvátal and Erdős [7], and a generalized version of the technique of [8] (using
the hypergraph extension of Hall’s theorem by Aharoni and Haxell [1]).
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